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Whispering gallery microresonator (WGM) filled with nonlinear material has proven to be valuable for enhancing
nonlinear optical effects. Here we explore the production of the pump-signal-idler tripartite entanglement based on
the integrated high-Q whispering gallery mode cavities filled with lithium niobate. Our theoretical analysis about the
entanglement condition when the van Loock and Furusawa criteria are violated paves the way for future investigation
of integrated entanglement based on nonlinear high-Q microresonator. In addition, we present parameters used in our
designed generator and our theoretical model is highly expansible to further exploration of entanglement over general
χ(2) whispering gallery microresonator.

Quantum computation is expected to provide exponential
speedup for particular mathematical problems such as integer
factoring, quantum system simulation and quantum informa-
tion processing1. Quantum cryptographic communication, on
the other hand, provides an absolutely safe way to pass infor-
mation without the risk of eavesdropping2.

In the center of both quantum computation and quantum
communication lies the concept of quantum entanglement,
therefore the generation of multipartite entanglement always
draws wide attention. Conventionally, entangled photon pairs
are generated inχ(2) bulky crystals that are usually difficult
to operate and susceptible to environmental perturbations. It
is recently proposed that entangled photon pairs can also be
generated from monolithic microresonators of whispering-
gallery type3 via four-wave mixing (FWM) processes inχ(3)

materials4 and all optical squeezing in an on-chip monolithi-
cally integrated CMOS compatible platform is observed5.

In a whispering-gallery resonator, whispering-gallery
modes of discrete propagation constant are guided by continu-
ous total internal reflection along a curved surface. WGM res-
onators have the strengths of high confinement to the optical
field, exceptionally high quality factor, and compatibility to
compact, chip-scale integration, so they have been replacing
χ(2) bulky crystals in many other applications of laser optics
recently6–9.

Theχ(2) parameter is usually about three orders higher than
χ(3), so the former paradigm enjoys a much more significant
nonlinear effect, and therefore, achieves entanglement more
easily. In this paper, we propose a theoretical model for gen-
eration of a tripartite quantum entanglement from a whisper-
ing gallery mode, and exhibit the design parameters overχ(2)

medium, paving the way for future optical quantum computa-
tion on chips.

Our generator scheme is shown in Fig. 1. A narrow
linewidth tunable CW laser followed by EDFA and BPF is
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FIG. 1. Tripartite entanglement generator with LN WGM and angle-
polished fiber coupling. Tunable CW Laser, Tunable continuous-
wave laser; EDFA, Erbium-doped fiber amplifier; BPF, bandpass fil-
ter; PC, polarization controller; AWG, arrayed waveguide grating.

continuously pumped into the microresonator to intrigue non-
linear effect in the whispering gallery mode cavity filled with
lithium niobate (LN). PC is used to control the polarizationof
input pump laser. Once the nonlinear effect produces different
frequencies photons compared with pump wave, we could uti-
lize AWG to separate these beams to analyse their characteris-
tics. The ring cavity is used for our entanglement detection10.

The resonator we used is a integrated cavity filled with LN
medium and the original photons annihilation and new pho-
tons occurrence originate from SPDC effect. The coupling

coefficient g of our system isg = 2πωs
χ(2)

εs

Vsip

Vs

√

2π~ωp

εpVp

11 . Once

we determine the coupling coefficient, the Hamiltonian for our
system is found to be

H = Hpump + Hint + H f ree, (1)

Hpump = i~a†pεp + H.c., (2)

Hint = i~(gapa†sa†i ) + H.c., (3)

H f ree = ~

∑

k

ωka†kak. (4)

Due to the momentum conservation among the interacting
photons, microresonator converts the pump wave into two dif-
ferent frequency wavesωp → ωs + ωi. Besides, in the mi-
croresonator, there might be other sorts of nonlinear effect
happens. However, owing to the smaller intensities and larger



2

phase mismatch, we thus neglect those processes in our anal-
ysis.

A microresonator is an open system since it not only ex-
hibits intrinsic scattering loss with a photon decay rate ofγk0

(for mode k), but also couples waves to the coupling waveg-
uide with an external coupling rate ofγkc. In order to describe
such an open system, we present the loss and out-coupling
terms as

Lkρ = γk(2akρa
†
k − a†kakρ − ρa†kak), (5)

whereρ stands for the density matrix of system andγk = γkc+

γk0 represents the damping rate of the loaded cavity. Then
the output field is determined by the well-known input-output
relation given as12

bout − bin =
√
γa (6)

in whichb is the boson annihilation operator for the bath field
outside the cavity.

As for the system model presented previously, whole pro-
cedure could be governed by the following master equation

∂ρ

∂t
= −

i
~

[Hpump + Hint, ρ] +
3

∑

k=1

Lkρ. (7)

The free Hamiltonian has been omitted here in Eq.7 because
of adding an rotating-wave approximatione−ωkt in it 12 .

To solve the master equation, we consort the Fockker-
Planck equation in P representation which could be shown as
a stochastic differential equation13

∂α

∂t
= F + Bη, (8)

whereα = [αp, αs, αi, α
∗
p, α

∗
s , α
∗
i ]

T andF = [ f , f ∗]T stands for
the main part of the system evolution.f is given as

f =



















gαsαi − εp + γpαp

−gαpα
∗
i + γsαs

−gαpα
∗
s + γiαi



















.

Matrix B is the noise terms which could be obtained by the
relationshipBBT

= D. D matrix we introduced here stands
for the diffusion matrix, which is given by

D =

(

d 0
0 d∗

)

,

whered is given by

d =



















0 0 0
0 0 gαp

0 gαp 0



















.

In Eq.8,η = [η1(t), η2(t), η3(t), c.c]T , whereηi are real noise
terms which is determined by〈ηi(t)〉 = 0 and

〈

ηi(t)η j(t)
〉

=

δi jδ(t − t′).
In order to solve Eq. 8, we convert the system variables into

their steady-state(classical) values and quantum fluctuations

asαk = Ak+δαk. Due to the facts that quantum fluctuations are
enough small compared with steady-state, thus it’s reasonable
for us to utilize the linearisation analysis to find the spectra for
the cavity outputs. To simplify the calculation, we assume the
s andi photons share the same photon decay rate and identical
coupling coefficient(γs = γi, γsc = γic, γs0 = γi0). And As

indicates the steady state for signal wave andAi is on behalf
of idler wave steady state. As a result, Eq. 8 could be rewrite
as owing to assumption that∂A

∂t = 0,

∂A + δα
∂t

=
∂δα

∂t
, (9)

∂δα

∂t
= F + Bη = f (A) + f (A, δ) + Bη. (10)

Firstly we solve the steady-state solution by setting the

f (A) = 0. The pump threshold is given byεth = γp

√
rsri

g .

Whenε < εth, the steady states are given as

Ap = ε/γp, (11)

As = 0, (12)

Ai = 0. (13)

Whenε > εth, the steady states are given as

Ap =

√
rsri

g
, (14)

As =

√

(ε − rpAp)ri

g2Ap
, (15)

Ai =
gApAs

ri
. (16)

Notice that, there is a threshold for pump wave and if the
pump wave power is below the threshold, there would be no
steady solution for signal wave and idler wave. Thus here we
only consider the situation that the field modes oscillate above
the threshold.

Once we get the steady states outcomes for each photon
mode, we put them back into the Eq. 8 and get the new sim-
plified equation

∂δα

∂t
= f (A, δ) + Bη = Mδα + Bη (17)

in which δα = [δαp, δαs, δαi, δα
∗
p, δα

∗
s, δα

∗
i ]

T . M is the drift
matrix given by

M =

(

m1 m2

m∗2 m∗1

)

,

wherem1 andm2 is

m1 =



















γp gAi gAs

−gAi γs 0
−gAs 0 γi

,



















m2 =



















0 0 0
0 0 −gAp

0 −gAp 0



















.

For the validity of linearised quantum-fluctuation analysis,
the quantum-fluctuation must be small enough compared with



3

mean values. If the requirement that the real part of the eigen-
values of−M stay non-negative is satisfied, the fluctuation
equations will describe an Ornstein-Uhlenbeck process14, for
which the intracavity spectral correlation matrix is givenby

S (ω) = (−M + iωI)−1D(−MT − iωI)−1. (18)

This matrix involves all the correlations required to study
the measurable extracavity spectra and we have checked the
stability numerically in the rest of discussion.

We introduce the quadrature operators for each mode in or-
der to discuss the tripartite entanglement

Xk = ak + a†k , (19)

Yk = −i(ak − a†k), (20)

with a commutation relationship of [Xk, Yk] = 2i. Thus we
know thatV(Xk) ≤ 1 could stands for the squeezed state based
on our operator definition.V(A) =

〈

A2
〉

− 〈A〉2 indicates the
variance of operatorA.

The output fields is determined by the well-known input-
output relations Eq. 6. In particular, the spectral variances and
covariances have the general form

S out
Xi

(ω) = 1+ 2γcS Xi (ω), (21)

S out
Xi ,X j

(ω) = 2γcS Xi ,X j(ω), (22)

Y quadratures have the similar expressions.
Multipartite entanglement criteria is given by the Van

Loock and Furusawa(VLF)15. In our discussion, we consider
Fokker-Planck equation in P representation and then analyse
the entanglement condition that van Loock and Furusawa cri-
teria are violated simultaneously. By using the above quadra-
ture definitions, the tripartite criteria is given by

S (1) = V(Xs − Xi) + V(Ys + Yi − gpYp) ≥ 4 (23)

S (2) = V(Xp + Xs) + V(Yp − Ys − giYi) ≥ 4 (24)

S (3) = V(Xp + Xi) + V(Yp − Yi − gsYs) ≥ 4 (25)

in which gk are arbitrary real parameters that are used to op-
timize the violation of these inequalities. Notice that, the fre-
quencies of signal wave and idler wave are almost same com-
pared with the pump wave, thus we choose to investigateS 1

andS 2 in our rest analysis.
Our microresonator is a spherical cavity of radiusR =

1.5mm, thicknessd = 0.5mm, filled with lithium niobate
medium. The coupling coefficient of our system isg =

2πωs
χ(2)

εs

Vsip

Vs

√

2π~ωp

εpVp

11 , in whichωs = 1.94× 1014 s−1, ωp =

3.87× 1014 s−1, Vp ≈ 2πR × 2R
√

( 2π
υp

) × R
υ

2/3
p
= 10−6 cm3, and

χ(2)
= 7 × 10−10cgs,Vsip/Vs = 0.3. Besides that, loaded Q

factors areQp ≃ 8× 106, Qs ≃ 1.2× 107. The wavelength of
the pump beam isλp = 775nm in the vacuum and wavelength
of signal beam isλs = 1548nm, idler beam isλi = 1552nm.

Our coupling coefficient for χ(2) is 0.0136 around, larger
about three order thanχ(3) coupling coefficient4, proving its
highly efficiency.

From our above discussion in Eq. [8-11], the stable solution
is completely governed by three parameters: total damping

rateγ, coupling coefficientg, and pump wave powerε, which
in turn determine the drift matrixM, the diffusion matrixD,
and the intracavity spectral correlation matrixS .

To begin with, we fixed the pumping powerε, but it’s al-
ways the variables outside the cavity that we observe. Thus
the transfer also plays a role in the observation, which is de-
termined by a ratioγc/γ. We vary the ratio based on the fixed
other components to investigate its influence over tripartite en-
tanglement. In Fig. 2, we plot the minimum of the variances
versus the analysis frequency normalized toγ whenγc sets
to the portion of 0.09, 0.34, 0.8 and 1 of the total damping
rate. Due to fact that signal photon has the similar character-
istic with idler photon, we choose to focus on theS (1) and the
S (2). The red dashed one relate withS (1) while blue solid one
stands forS (2).
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FIG. 2. Four variances versus frequency of pump plots whenγc/γ is
0.09, 0.34, 0.8, 1. The pump power is fixed at 1.2εth.

It’s important to notice from figure that whenγc/γ = 0.09,
there is no entanglement between pump photon and signal
photon. As we increase the out-coupling coefficients, thes
starts to entangle withp around the center frequency until
γc/γ = 0.34. And eventually when we set the portion to the
γc/γ = 1, the degree of entanglement is the largest compared
with other case. As a result, we conclude that the entangle-
ment among output modes increased as the termγc/γ. And the
higher portion the coupling coefficient is, the less consumed
entangled pairs are wasted in the internal loss. Therefore,the
entanglement would be better when the cavity has lower in-
tracavity loss and higher extracavity coupling coefficient.

In order to investigate the effect the pump power bringing
to the degree of entanglement, we firstly set theγ0 = 0 which
means no intracavity loss in this part of discussion. With our
previous discussion, the varianceS (i) as a function ofω/γ is
merely determined by the parameterε/εth rather thang, γ or
ε independently. We plot the minimum variance throughout
the noise power spectrum as a function of the pump power
which has been normalized byεth in Fig. 4. We plot variance
versus frequency under different pumping power in Fig. 3. It
can be inferred from the Fig. 4 that the variance ofS (2) would
first decrease as the pump power increasing and then ascend
with the pump power whileS (1) increase as the pump power
since the beginning.S (2) reaches its minimum value when
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FIG. 3. Extracavity variance versus frequency of pump power. The external coupling coefficient is fixed at:γc = γ.

ε = 1.2εth around. Considering thatS (2) are the short slabs of
the whole entanglement model, we conclude that the 1.2εth is
the best pump power in our case.

In conclusion, we propose the theoretical model for the
pump-signal-idler entanglement based on the high Q mi-
croresonator filled withχ(2) medium. By solving Fokker-
Planck equation in P representation, we analyse the entangle-
ment case where Van Loock and Furusawa criteria are vio-
lated at same time. We analytically relate the threshold of
pump power with cavity parameters and find that the intensity
of entanglement is completed influenced by theε

εth
, ω/γ, and

γc/γ. The results would offer a new path for the future study
for entanglement over integrated microrresonator filled with
χ(2) nonlinear medium.
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FIG. 4. The minimum variance as a function of pump power. The
external coupling coefficient is fixed atγc = γ.
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